Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA.
نویسندگان
چکیده
The maintenance of ionic homeostasis in response to changes in the environment is essential for all living cells. Although there are still many important questions concerning the role of the major monovalent cation K(+), cytoplasmic K(+) in bacteria is required for diverse processes. Here, we show that enzyme IIA(Ntr) (EIIA(Ntr)) of the nitrogen-metabolic phosphotransferase system interacts with and regulates the Escherichia coli K(+) transporter TrkA. Previously we reported that an E. coli K-12 mutant in the ptsN gene encoding EIIA(Ntr) was extremely sensitive to growth inhibition by leucine or leucine-containing peptides (LCPs). This sensitivity was due to the requirement of the dephosphorylated form of EIIA(Ntr) for the derepression of ilvBN expression. Whereas the ptsN mutant is extremely sensitive to LCPs, a ptsN trkA double mutant is as resistant as WT. Furthermore, the sensitivity of the ptsN mutant to LCPs decreases as the K(+) level in culture media is lowered. We demonstrate that dephosphorylated EIIA(Ntr), but not its phosphorylated form, forms a tight complex with TrkA that inhibits the accumulation of high intracellular concentrations of K(+). High cellular K(+) levels in a ptsN mutant promote the sensitivity of E. coli K-12 to leucine or LCPs by inhibiting both the expression of ilvBN and the activity of its gene products. Here, we delineate the similarity of regulatory mechanisms for the paralogous carbon and nitrogen phosphotransferase systems. Dephosphorylated EIIA(Glc) regulates a variety of transport systems for carbon sources, whereas dephosphorylated EIIA(Ntr) regulates the transport system for K(+), which has global effects related to nitrogen metabolism.
منابع مشابه
The three-dimensional structure of the nitrogen regulatory protein IIANtr from Escherichia coli.
The bacterial rpoN operon codes for sigma 54, which is the key sigma factor that, under nitrogen starvation conditions, activates the transcription of genes needed to assimilate ammonia and glutamate. The rpoN operon contains several other open reading frames that are cotranscribed with sigma 54. The product of one of these, the 17.9 kDa protein IIANtr, is homologous to IIA proteins of the phos...
متن کاملThe Thermotoga maritima Trk potassium transporter--from frameshift to function.
The gene for the Thermotoga maritima Trk potassium transporter component TrkA was originally thought to be a frameshift mutation and not to encode a functional protein. However, expression from this gene yielded a complex consisting of two distinct proteins designated TM1088A and -B. Genetic complementation of Escherichia coli mutants unable to transport potassium suggests that TM1088A/B is par...
متن کاملCation transport in Escherichia coli. IX. Regulation of K transport
Kinetics of K exchange in the steady state and of net K uptake after osmotic upshock are reported for the four K transport systems of Escherichia coli: Kdp, TrkA, TrkD, and TrkF. Energy requirements for K exchange are reported for the Kdp and TrkA systems. For each system, kinetics of these two modes of K transport differ from those for net K uptake by K-depleted cells (Rhoads, D. B. F.B. Walt...
متن کاملK+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane.
The TrkA protein, which is essential for the activity of the constitutive Trk K+-uptake system of Escherichia coli, is a peripheral membrane protein. The protein was detected in immunoblots by polyclonal antibodies to sodium dodecyl sulfate-denatured TrkA protein. In extracts from wild-type cells equal amounts of TrkA were found in the membrane and soluble fractions, suggesting that membrane bi...
متن کاملConstruction of New Genetic Tools as Alternatives for Protein Overexpression in Escherichia coli and Pseudomonas aeruginosa
Background: Pseudomonas protein expression in E. coli is known to be a setback due to signifi cant genetic variation and absence of several genetic elements in E. coli for regulation and activation of Pseudomonas proteins. Modifi cations in promoter/repressor system and shuttle plasmid maintenance have made the expression of stable and active Pseudomonas protein possible in bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 10 شماره
صفحات -
تاریخ انتشار 2007